日本韩国在线视频-日本韩国中文字幕-日本韩经典三级在线播放-日本韩一级二级三级-国内精品久久久久丫网址-国内精品久久久久影院欧美

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > PROTAC Linkers基礎(chǔ)知識介紹-BroadPharm

PROTAC Linkers基礎(chǔ)知識介紹-BroadPharm

更新時間:2023-02-15   點擊次數(shù):2189次

PROTACs, proteolysis targeting chimeras, are heterobifunctional small molecules composed of three distinct components: a warhead that binds to a target protein or protein of interest (POI), an anchor that binds to an E3 ubiquitin ligase, and a linker that conjugates the two ligands together (Figure 1). PROTACs take advantage of the ubiquitin-proteasome system (UPS), which is the waste disposal system of cells. This mechanism of PROTACs functions effectively at lower dosages, with reduced toxicity, and with prolonged pharmacodynamics when compared with more traditional inhibitors.

Figure 1: General structure of a PROTAC. The specific POI targeting "warhead" (blue) is connected to the E3 ligase targeting "anchor" (yellow) via a PROTAC linker.

It is becoming apparent that the linker plays a critical role in the physicochemical properties and bioactivity of the molecule. The length of the linker determines to what degree the two ligands interact and thus the maximal activity of the PROTAC molecule. Cyrus’s group determined that the optimal linker length for estrogen receptor (ER)-α targeting PROTACs is 16 atoms long; however, they noted that the optimal distance between the two ligands of any given PROTAC will need to be determined on a case-by-case basis.

There are a few common chemical motifs that occur often in PROTAC linker design. These motifs were recently highlighted by Maple’s group in a database they compiled of over 400 protein degrader structures. The most common motifs incorporated into PROTAC linker structures are PEG, Alkyl, and other glycol chains of varying lengths (Table 1).

Table 1: The three most commonly occurring PROTAC linker motifs in the Maple database.

Structure

Linker Motif

% in Published Research

PEG

55%

Alkyl

30%

Other Glycol

15%


(S,R. S)-AHPC-PEG linker (Figure 2) is a PROTAC linker molecule that incorporates a von Hippel-Lindau (VHL) E3 ligase ligand with a PEG linker. The VHL recruiting ligand is one of the most widely used E3 ligands in PROTAC technology. The PEG spacer increases reagent's solubility in aqueous media. This molecule allows for parallel synthesis to be used to generate PROTAC libraries that feature variation in crosslinker length, composition, and E3 ligase ligands due to the ability to select from many different types of functional groups on the PEG linker.

Figure 2: Structure of (S,R.S)-AHPC-PEG linker can attach different functional groups for bonding with POI ligands, such as carboxyl, amine, azide, alkyne, Tos, TCO, DBCO, etc.

The Pomalidomide based Cereblon (CRBN) ligand is another widely used E3 ligand. For example Pomalidomide-PEG5-Azide (Figure 3) is a CRBN ligand with a 5-unit PEG linker and a terminal azide. The azide group on this PROTAC technology enables click chemistry with alkyne, DBCO, and BCN molecules. This has been corroborated by a high number of different synthetic approaches and provides a basis for their importance in the future of PROTAC design.

Figure 3: Structure of Pomalidomide-PEG5-Azide.

As a worldwide leading supplier of PROTAC Linkers and biochemical reagents, BroadPharm offers a wide variety of linkers to empower our clients' advanced research and formulations. 美國BroadPharm作為PROTAC Linkers領(lǐng)域的提供者,為便于中國廣大客戶,可以聯(lián)系我們中國的總代理:靶點科技(北京)有限公司。技術(shù)專業(yè),渠道正規(guī),質(zhì)量保證,售后無憂。最快貨期一周。




靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2024 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:264494  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

主站蜘蛛池模板: 一级看片免费视频囗交 | 天堂69亚洲精品中文字幕| 亚洲日本片| 亚洲成人精品久久| 一本之道久| 亚州一区二区| 日本三级2021| 日韩欧美在线中文字幕| 四虎在线视频免费观看| 欧美视频一级| 亚洲毛片儿| 亚洲最新视频在线观看| 亚洲网站视频在线观看| 亚洲一区欧美在线| 三级视频网站在线观看视频| 欧美在线aa| 色洛色中文综合网站| 一级片免费网站| 欧美日韩中文| 亚洲午夜免费视频| 日韩三级免费| 亚洲国产激情| 性做久久久久久久久男女| 天天爽天天爽| 亚洲综合91| 一级黄色在线播放| 四级毛片| 亚洲精品福利你懂| 日韩精品欧美成人| 亚洲午夜久久久久久91| 亚洲伦理中文字幕一区| 性做久久久久久久久| 思思影院| 青青干视频| 日本精品久久| 亚洲视频在线免费观看| 亚洲va久久久久| 天天色天天| 亚洲午夜视频在线| 亚洲国产成人精品91久久久| 偷偷操99|